

Quad-pol Viewer

取扱説明書

Ver. 0.1.2.0

2010年09月

株式会社 システム計画研究所/ISP

■改訂履歴

Ver.	日付	内容	該当箇所
0.1.1.0	2009/10	初版	-
0.1.2.0	2010/09	英語化(Ver.0.1.2.0)	全項

	目	次	
--	---	---	--

1.	はじ	こめに
]	l.1.	動作環境1
1	1.2.	対象データ1
1	1.3.	本書で使用しているデータについて2
2.	画面	i構成3
3.	操作	£4
ę	3.1.	起動/終了
ę	3.2.	ファイルを開く
ç	3.3.	表示操作(拡大/縮小,移動)5
ę	3.4.	保存5
ę	3.5.	画面コピー5
ę	3.6.	閉じる5
ę	3.7.	ABOUT (QUAD-POL VIEWER について)
4.	処理	17
4	4.1.	ストレッチ7
4	1.2.	SIGNATURE
4	4.3.	基底変換10
Z	4.4.	HV / PAULI 表示 11
Z	4.5.	固有値解析
4	1.6.	四成分電力モデル分解15

1.はじめに

「Quad-pol Viewer」は、陸域観測技術衛星「だいち(ALOS)」搭載のフェーズドアレイ方式L バンド合成開口レーダ(PALSAR)から取得される、4 偏波データに特化した画像ビューアーで す。

参考文献 :

山口芳雄:「レーダポラリメトリの基礎と応用・偏波を用いたレーダリモートセンシングー」, 電子情報通信学会,2007

佐藤彰展,山口芳雄,山田寛喜:「回転化 coherency 行列を用いた四成分散乱モデル分解法に 関する検討」,電子情報通信学会技術研究報告, SANE2009-61, 2009 年 8 月

1.1. <u>動作環境</u>

「Quad-pol Viewer」の動作環境は、以下の通りです。

表 1-1 Quad-pol Viewer 動作環境					
	動作環境	推奨環境			
CPU	Dual Core CPU	Quad Core CPU			
メモリ	2GB 以上	3GB 以上			
ディスク容量	約 5MB	\leftarrow			
	※データは除く				
ディスプレイ解像	XGA(1024×768)以上	SXGA(1280×1024)以上			
度					
OS	Windows XP 32bit	Windows Vista 32bit			
	※.NET Framework 3.0 以上のイ				
	ンストールが必要				
その他	ホイール付マウス	\leftarrow			

1.2. <u>対象データ</u>

「Quad-pol Viewer」が対象とするデータは、以下の通りです。

ALOS PALSAR データを主なターゲットにしていますが、PolSAR pro でインポートしたデータ も処理することが可能です。

表 1-2 Quad-pol Viewer 対象データー覧

	レベル	備考
ALOS-PALSAR	JAXA 1.1 (CEOS)	
	ポラリメトリモード	
	ERSDAC 1.1 (VEXCEL)	
	ポラリメトリモード	
	ERSDAC 4.1 (CEOS)	Geo-code
	ポラリメトリモード	Geo-reference
PolSARpro	-	PolSARpro(http://earth.esa.int/polsarpro/)で出力
		した T3 データを読み込むことができます。

1.3. <u>本書で使用しているデータについて</u>

本書に掲載した「**Quad-pol Viewer**」の実行画面で表示しているデータは、ERSDAC ホーム ページ(http://www.palsar.ersdac.or.jp/product/p_product.html)で公開されたサンプルデータ を使用しています。

> (C) Research Institute of Systems Planning, Inc. Product Level 4.1 : Processed by ERSDAC Observed raw data : Belongs to METI and JAXA

2. 画面構成

「Quad-pol Viewer」は、三つの画面で構成されます。

(C) Research Institute of Systems Planning, Inc. Product Level 4.1 : Processed by ERSDAC Observed raw data : Belongs to METI and JAXA

図 2-1 画面構成

(1)コントロールウィンドウ

処理を起動するウィンドウ。

(2)スクロールビューウィンドウ

表示中のファイルの全体像を表示するウィンドウ。

イメージビューウィンドウで表示を行っている部分が赤枠で示されます。

(3)イメージビューウィンドウ

詳細部を表示するためのウィンドウ。

他の処理との比較のため、表示の複製を作成することができます。

3. 操作

3.1. 起動/終了

以下の二つの方法で「Quad-pol Viewer」を起動することができます。

・デスクトップに置かれたアイコン(2000)をダブルクリックします。

• [スタートメニュー]→[すべてのプログラム]→[Quad-pol Viewer]→[Quad-pol Viewer]をクリック

「Quad-pol Viewer」アプリケーションを終了するには、コントロールウィンドウの右上にあるボタン(X)をクリックします。

3.2. <u>ファイルを開く</u>

起動後、コントロールウィンドウにある[ファイル選択](^{ジファイル選択})をクリックします。 ファイル選択ダイアログが表示されます。表示を行いたい PALSAR 4 偏波データを選択します。

	間<			_ X	1
6	♥♥♥ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	▼ 4→ 検索		٩	
	🖢 整理 ▼ 🟢 表示 🔻 📑 新しいフォルダ			?	
	「前」		更新日時	種	
	■ PASL4100610210120410805020046.meta		2009/05/22 10:35	ME	
•	… ファイル名(近)	▼ PALSAF	R data JAXA/ERSDAC(ファイル種別選択
L		IIIK(C)) 🔫 キャンセル	·	

図 3-1 ファイルを開く

ERSDAC データは、*.meta ファイルを、JAXA データは、LED*ファイルを選択します。 また、PolSARpro 保存形式のファイルを読み込むには、ファイル種別を"T3(config.txt)"に変更 したうえで、config.txt ファイルを選択します。

3.3. 表示操作(拡大/縮小,移動)

表示を拡大するには、マウスホイールを上(奥側)方向に回します。 表示を縮小するには、マウスホイールを下(手前側)方向に回します。

表示位置を移動させるには、以下の三つの方法があります。

・イメージビューウィンドウで左ドラッグ(左ボタンを押したまま、マウスを移動させる)します。 →左ボタンを押した位置をドラッグ量/方向分移動させます。

・スクロールビューウィンドウで赤枠(イメージビューで表示中の領域を表します)を左ドラッグ します。

→表示枠を移動させます(イメージビューウィンドウの表示位置も変化します)。

・イメージビュー/スクロールビューウィンドウで、ダブルクリックします。

→ダブルクリックした位置を中心としてイメージビューウィンドウを表示します。

3.4. 保存

コントロールウィンドウの[PNG 保存](量)をクリックします。 ファイル保存ダイアログが表示されます。保存するファイル名を選択します。 現在の処理を反映した全体像が PNG 形式で保存されます。

3.5. <u>画面コピー</u>

コントロールウィンドウの[画面コピー](¹)をクリックすると、イメージビューウィンドウの複 製を作成できます。 思なる処理を行ったま云を比較できます

異なる処理を行った表示を比較できます。

新しいイメージビューウィンドウに対しては、処理を行うことができませんが、拡大率、表示位 置がコピー元のイメージビューウィンドウと同期します。

3.6. <u>閉じる</u>

コントロールウィンドウの[閉じる](^{×閉じる})をクリックすると、ファイルが閉じます。 引き続き、ファイルを開くことにより、別のデータファイルの表示を行うことができます。

3.7. About (Quad-pol Viewer について)

コントロールウィンドウの[About](^{About})をクリックすると、「**Quad-pol Viewer**」についての情報を表示します。

図 3-2 Quad-pol Viewer について

4. 処理

4.1. <u>ストレッチ</u>

コントロールウィンドウの[ツール]→[Stretch]をクリックすると、表示中の画像のリニアストレ ッチパラメータを編集する画面が表示されます。

最大/最小値を指定するには、下部のボックスに値を入力する方法と、ヒストグラム上の垂線(点線)をドラッグする方法との二種類があります。

指定したパラメータに対して、処理後のヒストグラムやプレビュー画像が変化し、処理後の状況 を確認しながら値を決定することが可能です。

また、バンド(青値、緑値、赤値)をそれぞれ可視/不可視に設定することが可能です。 [OK]ボタンを押すことにより、設定したパラメータがイメージウィンドウに反映されます。

4.2. Signature

コントロールウィンドウの[PALSAR]→[Signature]をクリックすると、イメージウィンドウで指 定した領域の Signature を表示するモードになります。

図 4-2 Signature 表示

Signature 表示部は、マウスドラッグにより回転させることが可能です。 領域の指定の仕方は、二種類あります。

表 4-1 Signature 表示操作

イメージウィンドウ操作	説明	備考
マウスクリック	指定した地点の情報が表示されます。	表示中の点は、イメージウィンド
		ウ,スクロールウィンドウに、赤色
		の矢印で表示されます。
マウスドラッグ	指定した領域の平均値を基に表示が行われま	表示中の領域は、イメージウィン
	す。	ドウ,スクロールウィンドウに、白
		色枠で表示されます。

地点(領域)の情報出力は、現在表示中の処理によって異なります。

現在表示中の処理が Window Size 指定により平均化されている場合には、平均化された値を使用して情報が表示されます。

項目	説明	備考
pixel	ファイル内の位置(横)	共通
line	ファイル内の位置(縦)	共通
α	アルファ角	固有値解析(α-Entropy)時のみ
Entropy	エントロピー値	固有値解析(α-Entropy)時のみ
$Z_n(\cdots)$	α-Entropy 分類のゾーンに分類された割合	固有値解析(α-Entropy)時のみ
Total	四成分全てを足した総電力値	四成分電力散乱モデル分解時のみ
Pn	四成分それぞれの値と総電力値に占める割合	四成分電力散乱モデル分解時のみ
Deorientation Angle	orientation Angle 回転を考慮した角度 四成分電	
		Deorientation オプション指定時の
		み
T <i>nn</i>	Coherency 行列の要素	共通
Cnn	Covariance 行列の要素	共通
Co-pol max/null	Co-pol Signature の最大値,最小値になる角度	共通
		※簡易的に求めています。

表 4-2 情報出力部表示項目一覧

4.3. <u>基底変換</u>

コントロールウィンドウの[PALSAR] \rightarrow [Basis Change]をクリックすると、偏波基底パラメータ設定画面を開きます。

🥶 BasisChangePa	rameter 🛛 🔀
Tilt Angle(*)	0.00
Ellipticity Angle(*)	0.00
Linear 0° pola	arization
Linear +45° po	larization
Linear -45° po	larization
Right circular po	larization
Left circular pol	larization
	Careal
	Cancel
4-3 偏波基底/	パラメータ設定画

OK ボタンを押すと、指定した偏波基底が反映されます。

HV、Pauli、固有値解析(α-Entropy 分類)、四成分電力モデル分解のいずれの表示中にも、偏 波基底を変更し、表示に反映することが可能です。

図 4-4 偏波基底変更例(HV 表示の場合)

4.4. <u>HV / Pauli 表示</u>

ファイルを選択後の初期表示は、HV または、Pauli が選択されます。

また、コントロールウィドウの[PALSAR]→[HV Basis]でHV 表示に、[PALSAR]→[Pauli Basis] で Pauli 表示に切り替えることが可能です。

HV: R:HH, G:HV, B:VV

(C) Research Institute of Systems Planning, Inc. Product Level 4.1 : Processed by ERSDAC Observed raw data : Belongs to METI and JAXA

図 4-5 HV 表示例

(C) Research Institute of Systems Planning, Inc. Product Level 4.1 : Processed by ERSDAC Observed raw data : Belongs to METI and JAXA

図 4-6 Pauli 表示例

ファイル選択後のデフォルト表示は、ファイル種別によって異なります。

表	4–3	ファイル選択後テフォルト表示
---	-----	----------------

デフォルト表示法	ファイル種別	備考
HV	ERSDAC 4.1 (CEOS) ポラリメトリモード	
Pauli	ERSDAC 1.1 (VEXCEL) ポラリメトリモード	
	JAXA 1.1 (CEOS) ポラリメトリモード	
	PolSARpro インポート済み T3 データ	

4.5. <u>固有値解析</u>

固有値解析により求まるアルファ角とエントロピー値により分類した画像が表示されます。

コントロールウィンドウの[PALSAR] \rightarrow [α -Entropy]をクリックすると、固有値解析(α – Entropy 分類)パラメータ設定画面が開きます。

各領域の境界を変更する方法は、テキストボックスによる入力と、境界線のドラッグとの二種類 があります。

各領域の色を変更するには、領域をダブルクリックしてください。色の設定ダイアログが表示さ れますので、新しい色を指定します。

図 4-8 色設定画面

ー度処理した後に、もう一度パラメータ設定画面を表示すると、頻度分布とプレビューが表示さ れるようになります。

頻度分布は、頻度分布制御部で透過度や色(レインボー/白)を変更することができます。

領域の境界/色を変更すると、プレビュー上にリアルタイムに反映されます。設定後の状態を把握しながらパラメータを決定することが可能です。

※ 平均化 Window サイズを変更した場合には、処理結果はプレビューと同様になりません。

(C) Research Institute of Systems Planning, Inc. Product Level 4.1 : Processed by ERSDAC Observed raw data : Belongs to METI and JAXA 固有値解析(α -Entropy 分類)表示例

4.6. <u>四成分電力モデル分解</u>

R:2回反射、G:堆積散乱、B:表面散乱、白(透明度):ヘリックス散乱を割り当てた画像が表示されます。

コントロールウィンドウの[PALSAR]→[4 Component Decomposition]をクリックすると、四成 分電力モデル分解設定画面を開きます。

図 4-10 四成分電力モデル分解パラメータ設定画面

建造物の壁角度補正フラグは、レーダ波の照射方向と建造物の壁が正対するように Coherency 行列を回転化する処理の On/Off を制御します。

(C) Research Institute of Systems Planning, Inc. Product Level 4.1 : Processed by ERSDAC Observed raw data : Belongs to METI and JAXA 図 4-11 四成分電力モデル分解表示例

Quad-pol Viewer お問い合わせ先

http://remote-sensing.isp.jp/Quad-pol/ E-Mail:quad-pol@ml.isp.co.jp ©2009 Research Institute of Systems Planning, Inc./ISP

株式会社システム計画研究所/ISP 本社 〒150-0031 東京都渋谷区桜丘町 2-9 カスヤビル http://www.isp.co.jp/